A Non-Convex Hybrid Overlapping Group Sparsity Model with Hyper-Laplacian Prior for Multiplicative Noise
نویسندگان
چکیده
Multiplicative noise removal is a quite challenging problem in image denoising. In recent years, hyper-Laplacian prior information has been successfully introduced the denoising and significant effects have achieved. this paper, we propose new hybrid regularizer model for removing multiplicative noise. The proposed consists of non-convex higher-order total variation overlapping group sparsity on regularizer. It combines advantages regularization regularization, which may simultaneously preserve fine-edge reduce staircase effect at same time. We develop an effective alternating minimization method nonconvex via direction multipliers framework, where majorization–minimization algorithm iteratively reweighted are adopted to solve corresponding subproblems. Numerical experiments show that outperforms most advanced terms visual quality certain measurements.
منابع مشابه
The Convex Relaxation Method on Deconvolution Model with Multiplicative Noise
In this paper, we consider variational approaches to handle the multiplicative noise removal and deblurring problem. Based on rather reasonable physical blurring-noisy assumptions, we derive a new variational model for this issue. After the study of the basic properties, we propose to approximate it by a convex relaxation model which is a balance between the previous non-convex model and a conv...
متن کاملTotal Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise
The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regulariz...
متن کاملUnder-Determined Non-cartesian MR Reconstruction with Non-convex Sparsity Promoting Analysis Prior
This work explores the problem of solving the MR reconstruction problem when the number of K-space samples acquired in a non-Cartesian grid is considerably less than the resolution (number of pixels) of the image. Mathematically this leads to the solution of an under-determined and ill-posed inverse problem. The inverse problem can only be solved when certain additional/prior assumption is made...
متن کاملA Convex Variational Model for Restoring Blurred Images with Multiplicative Noise
In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees the uniqueness of the solution and the stabilization of the algorithm. For solving the new convex variation...
متن کاملGroup Sparse Coding with a Laplacian Scale Mixture Prior
We propose a class of sparse coding models that utilizes a Laplacian Scale Mixture (LSM) prior to model dependencies among coefficients. Each coefficient is modeled as a Laplacian distribution with a variable scale parameter, with a Gamma distribution prior over the scale parameter. We show that, due to the conjugacy of the Gamma prior, it is possible to derive efficient inference procedures fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2023
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract7040336