A non-compact Krein-Milman theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

The Krein signature, Krein eigenvalues, and the Krein Oscillation Theorem

In this paper the problem of locating eigenvalues of negative Krein signature is considered for operators of the form JL, where J is skew-symmetric with bounded inverse and L is self-adjoint. A finite-dimensional matrix, hereafter referred to as the Krein matrix, associated with the eigenvalue problem JLu = λu is constructed with the property that if the Krein matrix has a nontrivial kernel for...

متن کامل

A Note on a Non-linear Krein-rutman Theorem

In this note we will present an extension of the Krein-Rutman theorem for an abstract non-linear, compact, positively 1-homogeneous operators on a Banach space having the properties of being increasing with respect to a convex cone K and such that there is a non-zero u ∈ K for which M Tu < u for some positive constant M . This will provide a uniform framework for recovering the Krein-Rutman-lik...

متن کامل

A Theorem of Krein Revisited

M. Krein proved in [KR48] that if T is a continuous operator on a normed space leaving invariant an open cone, then its adjoint T ∗ has an eigenvector. We present generalizations of this result as well as some applications to C∗-algebras, operators on l1, operators with invariant sets, contractions on Banach lattices, the Invariant Subspace Problem, and von Neumann algebras. M. Krein proved in ...

متن کامل

The Krein Matrix and an Interlacing Theorem

Consider the linear general eigenvalue problem Ay = λBy , where A and B are both invertible and Hermitian N × N matrices. In this paper we construct a set of meromorphic functions, the Krein eigenvalues, whose zeros correspond to the real eigenvalues of the general eigenvalue problem. The Krein eigenvalues are generated by the Krein matrix, which is constructed through projections on the positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1971

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1971.36.781