A New Upper Bound for the Irregularity Strength of Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Upper Bound for the Irregularity Strength of Graphs

A weighting of the edges of a graph is called irregular if the weighted degrees of the vertices are all different. In this note we show that such a weighting is possible from the weight set {1, 2, . . . , 6dnδ e} for all graphs not containing a component with exactly 2 vertices or two isolated vertices.

متن کامل

A new upper bound for the total vertex irregularity strength of graphs

We investigate the following modification of the well known irregularity strength of graphs. Given a total weighting w of a graph G = (V,E) with elements of a set {1, 2, . . . , s}, denote wtG(v) = ∑ e3v w(e)+w(v) for each v ∈ V . The smallest s for which exists such a weighting with wtG(u) 6= wtG(v) whenever u and v are distinct vertices of G is called the total vertex irregularity strength of...

متن کامل

Irregularity strength of dense graphs

Let G be a simple graph of order n with no isolated vertices and no isolated edges. For a positive integer w, an assignment f on G is a function f : E(G) → {1, 2, . . . , w}. For a vertex v, f(v) is defined as the sum f(e) over all edges e of G incident with v. f is called irregular, if all f(v) are distinct. The smallest w for which there exists an irregular assignment on G is called the irreg...

متن کامل

Irregularity Strength of Regular Graphs

Let G be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer w, a w-weighting of G is a map f : E(G) → {1, 2, . . . , w}. An irregularity strength of G, s(G), is the smallest w such that there is a w-weighting of G for which ∑

متن کامل

Product irregularity strength of graphs

Consider a simple graph G with no isolated edges and at most one isolated vertex. A labeling w : E(G) → {1, 2, . . . ,m} is called product-irregular, if all product degrees pdG(v) = ∏ e3v w(e) are distinct. The goal is to obtain a product-irregular labeling that minimizes the maximum label. This minimum value is called the product irregularity strength. The analogous concept of irregularity str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2011

ISSN: 0895-4801,1095-7146

DOI: 10.1137/090774112