A new reproducing kernel‐based nonlinear dimension reduction method for survival data

نویسندگان

چکیده

Based on the theories of sliced inverse regression (SIR) and reproducing kernel Hilbert space (RKHS), a new approach RDSIR (RKHS-based Double SIR) to nonlinear dimension reduction for survival data is proposed. An isometric isomorphism constructed based RKHS property, then function in can be represented by inner product two elements that reside isomorphic feature space. Due censorship data, double slicing used estimate weight adjust censoring bias. The sufficient (SDR) subspace estimated generalized eigen-decomposition problem. asymptotic property estimator established perturbation theory. Finally, performance illustrated simulated real data. numerical results show comparable with linear SDR method. Most importantly, also effectively extract nonlinearity from

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Analysis of Censored Survival Data with Dimension Reduction Methods‎: Tehran Lipid and Glucose Study

 ‎Cardiovascular diseases (CVDs) are the leading cause of death worldwide‎. ‎To specify an appropriate model to determine the risk of CVD and predict survival rate‎, ‎users are required to specify a functional form which relates the outcome variables to the input ones‎. ‎In this paper‎, ‎we proposed a dimension reduction method using a general model‎, ‎which includes many widely used survival m...

متن کامل

A New Method Combining LDA and PLS for Dimension Reduction

Linear discriminant analysis (LDA) is a classical statistical approach for dimensionality reduction and classification. In many cases, the projection direction of the classical and extended LDA methods is not considered optimal for special applications. Herein we combine the Partial Least Squares (PLS) method with LDA algorithm, and then propose two improved methods, named LDA-PLS and ex-LDA-PL...

متن کامل

Nonlinear Dimension Reduction

A series of different data sets were used for testing eight different non-linear dimension reduction methods. The data sets provided insight to various ways of using the methods and to their applications. The results are compared for the different methods and reasons for their behaviour is searched for. Results are mostly quite encouraging and usable.

متن کامل

A new technique for solving Fredholm integro-differential equations using the reproducing kernel method

This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2023

ISSN: ['0303-6898', '1467-9469']

DOI: https://doi.org/10.1111/sjos.12635