A new integral transform method for solving steady heat-transfer problem
نویسندگان
چکیده
منابع مشابه
A Boundary Integral Method for Solving Inverse Heat Conduction Problem
In this paper, a boundary integral method is used to solve an inverse heat conduction problem. An algorithm for the inverse problem of the one dimensional case is given by using the fundamental solution. Numerical results show that our algorithm is effective.
متن کاملA New Iterative Method For Solving Fuzzy Integral Equations
In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are valid.
متن کاملAn iterative method for solving a complex heat transfer problem
Conductive-radiative heat transfer in a scattering and absorbing medium bounded by two reflecting and radiating plane surfaces is considered. A diffusion model for describing heat transfer is examined. The theorems of existence and uniqueness of a solution of this problem are proved. An iterative procedure for solving radiative-conductive heat transfer problem is proposed.
متن کاملA FAST MESH-FREE GALERKIN METHOD FOR THE ANALYSIS OF STEADY-STATE HEAT TRANSFER
The element-free Galerkin method is employed for two-dimensional analysis of steady-state heat transfer. The unknown response of the system, i.e. temperature is approximated using the moving least squares technique. Numerical integration of governing simultaneous system of equations is performed by Gauss quadrature and new modified nodal integration techniques. Numerical examples and tests have...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2016
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci16s3639y