A NEW FEATURE DESCRIPTOR FOR LIDAR IMAGE MATCHING
نویسندگان
چکیده
منابع مشابه
New Robust Descriptor for Image Matching
Nowadays, object recognition based on feature extraction is widely used in image matching due to its robustness to different types of image transformations. This paper introduces a new approach for extracting invariant features from interest regions. This approach is inspired from the well known Scale Invariant Feature Transform (SIFT) interest points detector and aims to improve the computatio...
متن کاملExact order based feature descriptor for illumination robust image matching
We present a novel method for a feature descriptor called an exact order based descriptor (EOD). The proposed method consists of three steps. First, to resolve ordering ambiguity for pixels of the same intensity, an exact order image is created by changing the discrete intensity into a k-dimensional continuous value. Second, exact order based features are generated globally and locally. Finally...
متن کاملSemantic-Context-Based Augmented Descriptor for Image Feature Matching
This paper proposes an augmented version of local feature that enhances the discriminative power of the feature without affecting its invariance to image deformations. The idea is about learning local features, aiming to estimate its semantic, which is then exploited in conjunction with the bag of words paradigm to build an augmented feature descriptor. Basically, any local descriptor can be ca...
متن کاملA New Evaluation Framework and Image Dataset for Keypoint Extraction and Feature Descriptor Matching
Key point extraction and description mechanisms play a crucial role in image matching, where several image points must be accurately identified to robustly estimate a transformation or to recognize an object or a scene. New procedures for keypoint extraction and for feature description are continuously emerging. In order to assess them accurately, normalized data and evaluation protocols are re...
متن کاملA short feature vector for image matching: The Log-Polar Magnitude feature descriptor
The choice of an optimal feature detector-descriptor combination for image matching often depends on the application and the image type. In this paper, we propose the Log-Polar Magnitude feature descriptor-a rotation, scale, and illumination invariant descriptor that achieves comparable performance to SIFT on a large variety of image registration problems but with much shorter feature vectors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2013
ISSN: 2194-9050
DOI: 10.5194/isprsannals-ii-2-w1-157-2013