A New Clustering Method for Minimum Classification Error

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Error Classification Clustering

Clustering is the problem of identifying the distribution of patterns and intrinsic correlations in large data sets by partitioning the data points into similarity classes. In this paper, we study on the problem of clustering categorical data, where data objects are made up of non-numerical attributes. We propose MECC (Minimum Error Classification Clustering), an alternative technique for categ...

متن کامل

A New Simplified Gravitational Clustering Method for Multi-prototype Learning Based on Minimum Classification Error Training

In this paper, we propose a new simplified gravitational clustering method for multi-prototype learning based on minimum classification error (MCE) training. It simulates the process of the attraction and merging of objects due to their gravity force. The procedure is simplified by not considering velocity and multi-force attraction. The proposed hierarchical method does not depend on random in...

متن کامل

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

Discriminative Learning for Minimum Error Classification

Recently, due to the advent of artificial neural networks and learning vector quantizers, there is a resurgent interest in reexamining the classical techniques of discriminant analysis to suit the new classifier structures. One of the particular problems of interest is minimum error classification in which the misclassification probability is to be minimized based on a given set of training sam...

متن کامل

A new formalization of minimum classification error using a Parzen estimate of classification chance

In recent work, we showed that the Minimum Classification Error (MCE) criterion function commonly used for discriminative design of pattern recognition systems is equivalent to a Parzen window based estimate of the theoretical classification risk. In this analysis, each training token is mapped to the center of a Parzen kernel in the domain of a suitably defined random variable; the kernels are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korea Society of Computer and Information

سال: 2014

ISSN: 1598-849X

DOI: 10.9708/jksci.2014.19.7.001