A New Cluster Validity Index Based on the Adjustment of Within-Cluster Distance
نویسندگان
چکیده
منابع مشابه
Validity Measure of Cluster Based On the Intra-Cluster and Inter-Cluster Distance
The k-means method has been shown to be effective in producing good clustering results for many practical applications. However, a direct algorithm of k-means method requires time proportional to the product of number of patterns and number of clusters per iteration. This is computationally very expensive especially for large datasets. The main disadvantage of the k-means algorithm is that the ...
متن کاملA new cluster validity index for the fuzzy c-mean
In this paper a new cluster validity index is introduced, which assesses the average compactness and separation of fuzzy partitions generated by the fuzzy c-means algorithm. To compare the performance of this new index with a number of known validation indices, the fuzzy partitioning of two data sets was carried out. Our validation performed favorably in all studies, even in those where other v...
متن کاملModified Dunn’s cluster validity index based on graph theory
Clustering methods serve as common tools for efficient data analysis in many fields of science. The essential, yet often neglected, step in the cluster analysis is validation of the clustering results. This paper presents a novel cluster validity index, which is the modification of the well-known Dunn’s index. Our proposal is based on its generalization considering the shortest paths between da...
متن کاملA New Clustering Algorithm Based On Cluster Validity Indices
This paper addresses two most important issues in cluster analysis. The first issue pertains to the problem of deciding if two objects can be included in the same cluster. We propose a new similarity decision methodology which involves the idea of cluster validity index. The proposed methodology replaces a qualitative cluster recognition process with a quantitative comparison-based decision pro...
متن کاملA cluster validity index for fuzzy clustering
Cluster validity indexes have been used to evaluate the fitness of partitions produced by clustering algorithms. This paper presents a new validity index for fuzzy clustering called a partition coefficient and exponential separation (PCAES) index. It uses the factors from a normalized partition coefficient and an exponential separation measure for each cluster and then pools these two factors t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3036074