A Neural Network Approximation Based on a Parametric Sigmoidal Function
نویسندگان
چکیده
منابع مشابه
Approximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملApproximation by superpositions of a sigmoidal function
We generalize a result of Gao and Xu [4] concerning the approximation of functions of bounded variation by linear combinations of a fixed sigmoidal function to the class of functions of bounded φ-variation (Theorem 2.7). Also, in the case of one variable, [1: Proposition 1] is improved. Our proofs are similar to that of [4].
متن کاملApproximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملApproximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7030262