منابع مشابه
A Natural Series for the Natural Logarithm
Rodriguez Villegas expressed the Mahler measure of a polynomial in terms of an infinite series. Lück’s combinatorial L-torsion leads to similar series expressions for the Gromov norm of a knot complement. In this note we show that those formulae yield interesting power series expansions for the logarithm function. This generalizes an infinite series of Lehmer for the natural logarithm of 4. 1 T...
متن کاملTorus Knot complements: A natural series for the natural logarithm
Lück expressed the Gromov norm of a knot complement in terms of an infinite series that can be computed from a presentation of the fundamental group of the knot complement. In this note we show that Lück’s formula, applied to torus knots, yields surprising power series expansions for the logarithm function. This generalizes an infinite series of Lehmer for the natural logarithm of 4. 1 Backgrou...
متن کاملThe Natural Logarithm on Time Scales
We define an appropriate logarithm function on time scales and present its main properties. This gives answer to a question posed by M. Bohner in [J. Difference Equ. Appl. 11 (2005), no. 15, 1305–1306].
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Natural Interpolation of Time Series
To interpolate data which is sampled in finite, discrete time steps into a continuous signal e.g. for resampling, normally a model has to be introduced for this purpose, like linear interpolation, splines, etc. In this paper we attempt to derive a natural method of interpolation, where the correct model is derived from the data itself, using some general assumptions about the underlying process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2008
ISSN: 1077-8926
DOI: 10.37236/880