A multivalued logarithm on time scales

نویسندگان

چکیده

A new definition of a multivalued logarithm on time scales is introduced for delta-differentiable functions that never vanish. This arises naturally from the cylinder transformation also wellspring exponential scales. will lead to function arbitrary with familiar and useful properties previous definitions in literature lacked.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Natural Logarithm on Time Scales

We define an appropriate logarithm function on time scales and present its main properties. This gives answer to a question posed by M. Bohner in [J. Difference Equ. Appl. 11 (2005), no. 15, 1305–1306].

متن کامل

First Order Multivalued Problems on Time Scales

We present an existence result for first order dynamic inclusions on time scales with a periodic boundary value condition, assuming the existence of a solution tube for the considered inclusion and the Henstock integrability of the multifunction on the right-hand side.

متن کامل

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Theory of hybrid differential equations on time scales

‎In this paper‎, ‎we develop the theory of hybrid differential‎ ‎equations on time scales‎. ‎An existence theorem for hybrid‎ ‎differential equations on time scales is given under Lipschitz ‎conditions‎. ‎Some fundamental fractional differential inequalities‎ ‎are also established which are utilized to prove the existence of‎ ‎extremal solutions‎. ‎Necessary tools are considered and the‎ ‎compa...

متن کامل

Systems on Time Scales

We establish WKB estimates for 2 × 2 linear dynamic systems with a small parameter ε on a time scale unifying continuous and discrete WKB method. We introduce an adiabatic invariant for 2 × 2 dynamic system on a time scale, which is a generalization of adiabatic invariant of Lorentz’s pendulum. As an application we prove that the change of adiabatic invariant is vanishing as ε approaches zero. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2021

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2021.125954