A multi-domain Chebyshev collocation method for predicting ultrasonic field parameters in complex material geometries
نویسندگان
چکیده
منابع مشابه
Chebyshev Collocation Method for Shallow Water Models with Domain Decomposition
The spectral methods seek the numerical solutions by a set of known polynomials. The main advantage of using spectral methods for solving atmospheric problems is the high efficiency and conservations of important quadratic quantities such as kinetic energy and enstrophy. Namely, we can get very high accuracy through the exponential convergence. The conservation of the quadratic quantities are i...
متن کاملGeneralized Chebyshev Collocation Method
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
متن کاملSuperconvergence of a Chebyshev Spectral Collocation Method
We reveal the relationship between a Petrov–Galerkin method and a spectral collocation method at the Chebyshev points of the second kind (±1 and zeros of Uk) for the two-point boundary value problem. Derivative superconvergence points are identified as the Chebyshev points of the first kind (Zeros of Tk). Super-geometric convergent rate is established for a special class of solutions.
متن کاملOn a modication of the Chebyshev collocation method for solving fractional diffiusion equation
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
متن کاملPreconditioning techniques in Chebyshev collocation method for elliptic equations
When one approximates elliptic equations by the spectral collocation method on the Chebyshev-Gauss-Lobatto (CGL) grid, the resulting coefficient matrix is dense and illconditioned. It is known that a good preconditioner, in the sense that the preconditioned system becomes well conditioned, can be constructed with finite difference on the CGL grid. However, there is a lack of an efficient solver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ultrasonics
سال: 2002
ISSN: 0041-624X
DOI: 10.1016/s0041-624x(02)00133-6