A modified graded mesh and higher order finite element method for singularly perturbed reaction–diffusion problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Analysis of an Exponentially Graded Mesh for Singularly Perturbed Problems

We present the mathematical analysis for the convergence of an h version Finite Element Method (FEM) with piecewise polynomials of degree p ≥ 1, de ned on an exponentially graded mesh. The analysis is presented for a singularly perturbed reaction-di usion and a convection-di usion equation in one dimension. We prove convergence of optimal order and independent of the singular perturbation param...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem

Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter ǫ provided only that ǫ ≤ N. An O(N(lnN)) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumpti...

متن کامل

Higher Order Energy Expansions for Some Singularly Perturbed Neumann Problems

We consider the following singularly perturbed semilinear elliptic problem: 2 u ? u + u p = 0 in ; u > 0 in and @u @ = 0 on @; where is a bounded smooth domain in R N , > 0 is a small constant and p is a sub-critical exponent. Let J u] := R (2 2 jruj 2 + 1 2 u 2 ? 1 p+1 u p+1)dx be its energy functional, where u 2 H 1 ((). Ni and Takagi ((15], 16]) proved that for a single boundary spike soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics and Computers in Simulation

سال: 2021

ISSN: 0378-4754

DOI: 10.1016/j.matcom.2021.01.006