A Modified Crank-Nicolson Numerical Scheme for the Flory-Huggins Cahn-Hilliard Model
نویسندگان
چکیده
منابع مشابه
Numerical schemes for a three component Cahn-Hilliard model
In this article, we investigate numerical schemes for solving a three component CahnHilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three d...
متن کاملA Note on Crank-Nicolson Scheme for Burgers’ Equation
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analy...
متن کاملCrank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...
متن کاملA second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system
We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...
متن کاملA semidiscrete scheme for a one-dimensional Cahn-Hilliard equation
We analyze a semidiscrete scheme for the Cahn-Hilliard equation in one space dimension, when the interface length parameter is equal to zero. We prove convergence of the scheme for a suitable class of initial data, and we identify the limit equation. We also characterize the long-time behavior of the limit solutions. keywords: Nonconvex functionals, forward-backward parabolic equations, finite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Computational Physics
سال: 2022
ISSN: ['1991-7120', '1815-2406']
DOI: https://doi.org/10.4208/cicp.oa-2021-0074