A Mixture of Regular Vines for Multiple Dependencies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling, conditionalizing, counting, merging, searching regular vines

We present a sampling algorithm for a regular vine on n variables which starts at an arbitrary variable. A sampling order whose nested conditional probabilities can be written as products of (conditional) copulas in the vine and univariate margins is said to be implied by the regular vine. We show that there are 2 implied sampling orders for any regular vine on n variables. We show that two reg...

متن کامل

Incorporating Regular Vines in Estimation of Distribution Algorithms

This chapter presents the incorporation and use of regular vines into Estimation of Distribution Algorithms for solving numerical optimization problems. Several kinds of statistical dependencies among continuous variables can be taken into account by using regular vines. This work presents a procedure for selecting the most important dependencies in EDAs by truncating regular vines. Moreover, t...

متن کامل

Structure learning in Bayesian Networks using regular vines

Learning the structure of a Bayesian Network from multidimensional data is an important task in many situations, as it allows understanding conditional (in)dependence relations which in turn can be used for prediction. Current methods mostly assume a multivariate normal or a discrete multinomial model. A new greedy learning algorithm for continuous non-Gaussian variables, where marginal distrib...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Causal discovery with scale-mixture model for spatiotemporal variance dependencies

In conventional causal discovery, structural equation models (SEM) are directly applied to the observed variables, meaning that the causal effect can be represented as a function of the direct causes themselves. However, in many real world problems, there are significant dependencies in the variances or energies, which indicates that causality may possibly take place at the level of variances o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Probability and Statistics

سال: 2021

ISSN: 1687-9538,1687-952X

DOI: 10.1155/2021/5559518