A Mixed Discontinuous Galerkin Method for the Helmholtz Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation

In this paper, we first split the biharmonic equation !2u = f with nonhomogeneous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v = !u and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation vh of v can easily be eliminated to reduce the discrete problem to a Schur complement sys...

متن کامل

A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation

A robust multilevel preconditioner based on the hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number is presented in this paper. There are two keys in our algorithm, one is how to choose a suitable intergrid transfer operator, and the other is using GMRES smoothing on coarse grids. The multilevel method is performed as a preconditioner in the outer GMRES i...

متن کامل

Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation

Finite element methods for acoustic wave propagation problems at higher frequency result in very large matrices due to the need to resolve the wave. This problem is made worse by discontinuous Galerkin methods that typically have more degrees of freedom than similar conforming methods. However hybridizable discontinuous Galerkin methods offer an attractive alternative because degrees of freedom...

متن کامل

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber∗

This paper is concerned with an interior penalty discontinuous Galerkin (IPDG) method based on a flexible type of non-polynomial local approximation space for the Helmholtz equation with varying wavenumber. The local approximation space consists of multiple polynomial-modulated phase functions which can be chosen according to the phase information of the solution. We obtain some approximation p...

متن کامل

Convergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method for the Helmholtz Equation

In this thesis, we are mainly concerned with the numerical solution of the two dimensional Helmholtz equation by an adaptive Interior Penalty Discontinuous Galerkin (IPDG) method based on adaptively refined simplicial triangulations of the computational domain. The a posteriori error analysis involves a residual type error estimator consisting of element and edge residuals and a consistency err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/9582583