A metric basis characterization of Euclidean space
نویسندگان
چکیده
منابع مشابه
A Metric Characterization of Snowflakes of Euclidean Spaces
We give a metric characterization of snowflakes of Euclidean spaces. Namely, a metric space is isometric to Rn equipped with a distance (dE) , for some n ∈ N0 and ∈ (0, 1], where dE is the Euclidean distance, if and only if it is locally compact, 2-point isometrically homogeneous, and admits dilations of any factor.
متن کاملA Menger Redux: Embedding Metric Spaces Isometrically in Euclidean Space
We present geometric proofs of Menger’s results on isometrically embedding metric spaces in Euclidean space. In 1928, Karl Menger [6] published the proof of a beautiful characterization of those metric spaces that are isometrically embeddable in the ndimensional Euclidean space E. While a visitor at Harvard University and the Rice Institute in Houston during the 1930-31 academic year, Menger ga...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملConvexity and the Euclidean Metric of Space-Time
We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1975
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1975.60.159