A method for finding permanents of $0,\,1$ matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random path method with pivoting for computing permanents of matrices

The permanent of matrix is important in mathematics and applications. Its computation, however, is #P-complete. Randomized algorithms are natural consideration to deal with such kind of problems. A Monte Carlo algorithm for approximating permanents of matrices is proposed in this paper, which improves a method by Rasmussen. Mathematical analysis and numerical computations show the efficiency of...

متن کامل

An Inequality for Permanents of (0,1)-Matrices*

Let A be an n-square (0, 1)-matrix, let ri denote the i-th row sum of A, i = 1 ..... n, and let per(A) denote the permanent of A. Then per(A) ~< H ri q~/-2,.1 I + V T where equality can occur if and only if there exist permutation matrices P and Q such that PAQ is a direct sum of l-square and 2-square matrices all of whose entries are 1. I f A = (ai~) is an n-square mat r ix then the permanent ...

متن کامل

Permanents of Positive Semidefinite Hermitian Matrices

In this project, we are interested in approximating permanents of positive semidefinite Hermitian matrices. Specifically, we find conditions on positive semidefinite Hermitian matrices such that we can generalize the algorithm described in Sections 3.6 3.7 of [1] to matrices satisfying these conditions.

متن کامل

A hybrid algorithm for computing permanents of sparse matrices

The permanent of matrices has wide applications in many fields of science and engineering. It is, however, a #P-complete problem in counting. The best-known algorithm for computing the permanent, which is due to Ryser [Combinatorial Mathematics, The Carus Mathematical Monographs, vol. 14, Mathematical Association of America, Washington, DC, 1963], runs O(n2 ) in time. It is possible to speed up...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1982

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1982-0637294-0