A Menon-type identity in residually finite Dedekind domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P -orderings of finite subsets of Dedekind domains

If R is a Dedekind domain, P a prime ideal of R and S ⊆R a finite subset then a P -ordering of S, as introduced by M. Bhargava in (J. Reine Angew. Math. 490:101–127, 1997), is an ordering {ai}i=1 of the elements of S with the property that, for each 1 < i ≤m, the choice of ai minimizes the P -adic valuation of ∏j<i(s− aj ) over elements s ∈ S. If S, S′ are two finite subsets of R of the same ca...

متن کامل

Elliptic Dedekind Domains Revisited

We give an affirmative answer to a 1976 question of M. Rosen: every abelian group is isomorphic to the class group of an elliptic Dedekind domain R. We can choose R to be the integral closure of a PID in a separable quadratic field extension. In particular, this yields new and – we feel – simpler proofs of theorems of L. Claborn and C.R. Leedham-Green. Luther Claborn received his PhD from U. Mi...

متن کامل

Residually Finite, Congruence Meet-semidistributive Varieties of Finite Type Have a Finite Residual Bound

We show that a residually finite, congruence meet-semidistributive variety of finite type is residually < N for some finite N . This solves Pixley’s problem and a special case of the restricted Quackenbush problem.

متن کامل

A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS

In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...

متن کامل

A dedekind finite borel set

In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if B ⊆ 2 is a Gδσ-set then either B is countable or B contains a perfect subset. Second, we prove that if 2 is the countable union of countable sets, then there exists an Fσδ set C ⊆ 2 such that C is uncountable but contains no perfect subset. Finally, we c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2015.12.018