A Menger-like property of tree-cut width

نویسندگان

چکیده

In 1990, Thomas proved that every graph admits a tree decomposition of minimum width additionally satisfies certain vertex-connectivity condition called leanness. This result had many uses and has been extended to several other decompositions. this paper, we consider tree-cut decompositions, have introduced by Wollan (2015) as possible edge-version We show an edge-connectivity analogous Thomas'

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Applications of Tree-Cut Width

The recently introduced graph parameter tree-cut width plays a similar role with respect to immersions as the graph parameter treewidth plays with respect to minors. In this paper we provide the first algorithmic applications of tree-cut width to hard combinatorial problems. Tree-cut width is known to be lower-bounded by a function of treewidth, but it can be much larger and hence has the poten...

متن کامل

A Diagonalization Property between Hurewicz and Menger

In classical works, Hurewicz and Menger introduced two diagonalization properties for sequences of open covers. Hurewicz found a combinatorial characterization of these notions in terms of continuous images. Recently, Scheepers has shown that these notions are particular cases in a large family of diagonalization schemas. One of the members of this family is weaker than the Hurewicz property an...

متن کامل

A Note on Tree-width Path-width and Cutwidth*

Let tw(G), pw(G), c(G), !J.(G) denote, respectively, the tree-width, path-width, cutwidth and the maximum degree of a graph G on 11 vertices . It is known that c (G)~tw (G). We prove that c (G) =0 (tw (G)·!J.(G)·logn), and if ({Xj : iel] ,T=(I,A» is a tree decomposition of G with tree-wid~ then c (G) S (k+ l)·!J.(G)·c (T). In case that a tree decomposition is given, or that the tree-width is bo...

متن کامل

A note on clique-width and tree-width for structures

We give a simple proof that the straightforward generalisation of clique-width to arbitrary structures can be unbounded on structures of bounded tree-width. This can be corrected by allowing fusion of elements.

متن کامل

Bounding connected tree-width

Diestel and Müller showed that the connected tree-width of a graph G, i. e., the minimum width of any tree-decomposition with connected parts, can be bounded in terms of the tree-width of G and the largest length of a geodesic cycle in G. We improve their bound to one that is of correct order of magnitude. Finally, we construct a graph whose connected tree-width exceeds the connected order of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2021

ISSN: ['0095-8956', '1096-0902']

DOI: https://doi.org/10.1016/j.jctb.2020.12.005