A Matsumoto–Yor characterization for Kummer and Wishart random matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wishart and Anti-Wishart random matrices

We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices AA, for any finite number of rows and columns of A, without any large N approximations. In particular we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure o...

متن کامل

Nonintersecting Brownian interfaces and Wishart random matrices.

We study a system of N nonintersecting (1+1)-dimensional fluctuating elastic interfaces ("vicious bridges") at thermal equilibrium, each subject to periodic boundary condition in the longitudinal direction and in presence of a substrate that induces an external confining potential for each interface. We show that, for a large system and with an appropriate choice of the external confining poten...

متن کامل

Non-Hermitean Wishart random matrices (I)

A non-Hermitean extension of paradigmatic Wishart random matrices is introduced to set up a theoretical framework for statistical analysis of (real, complex and real-quaternion) stochastic time series representing two ‘remote’ complex systems. The first paper in a series provides a detailed spectral theory of non-Hermitean Wishart random matrices composed of complex valued entries. The great em...

متن کامل

Singular value correlation functions for products of Wishart random matrices

We consider the product ofM quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalises the classical Wishart-Laguerre Gaussian Unitary Ensemble with M = 1. In this paper we first compute the joint probability distribution for the singular values of the product matrix when the matrix sizeN and t...

متن کامل

On the largest-eigenvalue process for generalized Wishart random matrices

Using a change-of-measure argument, we prove an equality in law between the process of largest eigenvalues in a generalized Wishart random-matrix process and a last-passage percolation process. This equality in law was conjectured by Borodin and Péché (2008).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2018

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2017.12.041