A matrix-splitting method for symmetric affine second-order cone complementarity problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A matrix-splitting method for symmetric affine second-order cone complementarity problems

The affine second-order cone complementarity problem (SOCCP) is a wide class of problems that contains the linear complementarity problem (LCP) as a special case. The purpose of this paper is to propose an iterative method for the symmetric affine SOCCP that is based on the idea ofmatrix splitting.Matrix-splittingmethods have originally been developed for the solution of the system of linear eq...

متن کامل

An Efficient Matrix Splitting Method for the Second-Order Cone Complementarity Problem

Given a symmetric and positive (semi)definite n-by-n matrix M and a vector, in this paper, we consider the matrix splitting method for solving the second-order cone linear complementarity problem (SOCLCP). The matrix splitting method is among the most widely used approaches for large scale and sparse classical linear complementarity problems (LCP), and its linear convergence is proved by [Luo a...

متن کامل

A continuation method for nonlinear complementarity problems over symmetric cone

In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.

متن کامل

A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems

This paper extends the regularized smoothing Newton method in vector optimization to symmetric cone optimization, which provide a unified framework for dealing with the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem (SCCP). In particular, we study strong semismoothness and Jacobian nonsingularity of the total natura...

متن کامل

An efficient algorithm for second-order cone linear complementarity problems

Recently, the globally uniquely solvable (GUS) property of the linear transformation M ∈ Rn×n in the second-order cone linear complementarity problem (SOCLCP) receives much attention and has been studied substantially. Yang and Yuan [30] contributed a new characterization of the GUS property of the linear transformation, which is formulated by basic linear-algebra-related properties. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2005

ISSN: 0377-0427

DOI: 10.1016/j.cam.2004.05.018