A Lyapunov-Lurye Functional Parametrization of Discrete-Time Zames-Falb Multipliers

نویسندگان

چکیده

We consider the absolute stability of discrete-time Lurye systems with SISO/MIMO (non-repeated SISO) nonlinearities that are sector bounded and slope restricted. For this class systems, we present a parametrization Lyapunov-Lurye functional (LLF) is time-domain equivalence to finite impulse response (FIR) Zames-Falb multipliers. As searches over FIR multipliers provide best-known results in literature, here provides Lyapunov function for stability. A motivation alternative making it easy analyze system time domain, especially when frequency domain expression not straightforward. In letter, show between proposed LLF theoretically numerically.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase limitations of Zames-Falb multipliers

Phase limitations of both continuous-time and discrete-time Zames-Falb multipliers and their relation with the Kalman conjecture are analysed. A phase limitation for continuous-time multipliers given by Megretski is generalised and its applicability is clarified; its relation to the Kalman conjecture is illustrated with a classical example from the literature. It is demonstrated that there exis...

متن کامل

Stability Analysis of Bilateral Teleoperation with Bounded and Monotone Environments via Zames-Falb Multipliers

This paper provides less conservative stability conditions for bilateral teleoperation by exploiting the advantages of the integral quadratic constraint (IQC) framework, where the environment can be defined as a memoryless, bounded, and monotonic nonlinear operator. Recent advances in multiplier theory for appropriate classes of uncertainties/nonlinearities are applied. Since the classes of mul...

متن کامل

The Zames-Falb IQC for systems with integrators

a1 = 18c ((cos(4c) + 2 cos(2c) 0 1) q1 0 (1 0 cos(4 c)) q 2) w c p 2 1 + 36c(q1 + q2) (1 0 cos(4c)) w 3 c p1p3 + 18 c ((cos(4 c) 0 1)(q 1 + q 2) 0 2 cos(2c)q1) w 5 c p 2 3 (12d) b 0 = 9 cos(2 c)(q 2 0 q 1) p 2 1 0 2p 1 p 3 w 2 c + w 4 c p 2 3 w c (12e) b 1 = 0 18 c (sin(4 c) + sin(2 c)) (q 1 + q 2)w c p 2 1 + 36c (sin(4c)(q2 + q1) + sin(2 c)(q 2 0 q 1)) w 3 c p 1 p 3 (12f) 0 18c (sin(4c)(q1 + q...

متن کامل

On Multipliers Theory

Multipliers are often used to find conditions for the absolute stability of Lur'e systems. They can be used either in conjunction with passivity theory or within the more recent framework of integral quadratic constraints (IQCs). This seminar presents two equivalence results within multiplier theory. In the first part of the seminar, passivity with multipliers and IQC theory are compared. The p...

متن کامل

Positive 2D Discrete-Time Linear Lyapunov Systems

Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE control systems letters

سال: 2022

ISSN: ['2475-1456']

DOI: https://doi.org/10.1109/lcsys.2021.3069157