A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short Survey on Biharmonic Maps between Riemannian Manifolds

and the corresponding Euler-Lagrange equation is H = 0, where H is the mean curvature vector field. If φ : (M, g) → (N, h) is a Riemannian immersion, then it is a critical point of the bienergy in C∞(M,N) if and only if it is a minimal immersion [26]. Thus, in order to study minimal immersions one can look at harmonic Riemannian immersions. A natural generalization of harmonic maps and minimal ...

متن کامل

Biharmonic Hypersurfaces in Riemannian Manifolds

We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...

متن کامل

Biharmonic Maps between Doubly Warped Product Manifolds

In this paper biharmonic maps between doubly warped product manifolds are studied. We show that the inclusion maps of Riemannian manifolds B and F into the doubly warped product f B ×b F can not be proper biharmonic maps. Also we analyze the conditions for the biharmonicity of projections f B ×b F → B and f B ×b F → F , respectively. Some characterizations for non-harmonic biharmonic maps are g...

متن کامل

A Liouville Type Theorem for a General Class of Operators on Complete Manifolds

(0.1)  i) φ ∈ C1((0,+∞)) ∩ C0([0,+∞)); ii) φ(0) = 0, φ(t) > 0 on (0,+∞); iii) φ(t) ≤ Atδ on [0,+∞) for some constants A, δ > 0. We state our main result in the form of the following Liouville type: Theorem A. Let (M, 〈〉), r(x) be as above and let φ satisfy (0.1). Let u ∈ C2(M) be a solution of the equation (0.2) div (|∇u|−1 φ(|∇u|)∇u) = a for some a ∈ R, such that (0.3) u(x) = o ( log r(x) ...

متن کامل

A Liouville theorem for harmonic maps and

A Liouville theorem is proved which generalizes the papers of Hu, MP].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2018

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-018-1189-6