A limit theorem for collision path of one-dimensional independent random motions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A log-scale limit theorem for one-dimensional random walks in random environments

We consider a transient one-dimensional random walk Xn in random environment having zero asymptotic speed. For a class of non-i.i.d. environments we show that log Xn/ log n converges in probability to a positive constant. MSC2000: primary 60K37, 60F05; secondary 60F10, 60J85.

متن کامل

A Local Limit Theorem for Sums of Independent Random Vectors

We prove a local limit theorem for sums of independent random vectors satisfying appropriate tightness assumptions. In particular, the local limit theorem holds in dimension 1 if the summands are uniformly bounded.

متن کامل

Numerical solution for one-dimensional independent of time Schrödinger Equation

In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

One-dimensional heat conductivity exponent from a random collision model.

We obtain numerically the thermal conductivity of a quasi-one-dimensional classical chain of hard sphere particles as a function of the length of the chain, introducing a fresh model for this problem. The conductivity scales as a power law of the length over two decades, with an exponent very close to the analytical prediction of 1/3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1986

ISSN: 0018-2079

DOI: 10.32917/hmj/1206130543