A kinetic reaction model for biomass pyrolysis processes in Aspen Plus
نویسندگان
چکیده
منابع مشابه
Kinetic models for biomass pyrolysis
Biomass is a versatile material. It can be directly combusted to produce heat; however, by first subjecting it to a thermal or biological degradation, it can also be converted to products with a higher heating value or to materials with properties superior to those of the raw material [1]. When heated in the absence of oxygen, biomass decomposes into a range of products; including char (solid),...
متن کاملSimulation of Biomass Gasification in Fluidized Bed Using Aspen Plus
Gasification is a thermo-chemical process to convert carbon-based compounds such as biomass and coal into a gaseous fuel. Among the various types of gasification methods, fluidized bed gasification is one which is considered as more efficient method than others as biomass is fluidized in a mixture of air/oxygen and steam. In the present study, a comprehensive steady state process model has been...
متن کاملA phenomenological model of the mechanisms of lignocellulosic biomass pyrolysis processes
A comprehensive particle scale model for pyrolysis of biomass has been developed by coupling the reaction mechanisms and transport phenomena. The model, which also accounts for the combined effect of various parameters such as particle shrinkage and drying, was validated using available experimental data from the literature. The validated model was then used to study the effect of operating tem...
متن کاملEstimation of Kinetic Parameters of Coking Reaction Rate in Pyrolysis of Naphtha
The run length of cracking furnaces is limited by the formation of coke on the internal skin of the reactor tubes. The reaction mechanism of thermal cracking of hydrocarbons is generally accepted as free-radical chain reactions. On the basis of the plant output data and the insight in the mechanisms for coke formation in pyrolysis reactors, a kinetic model describing the coke formation has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Energy
سال: 2017
ISSN: 0306-2619
DOI: 10.1016/j.apenergy.2016.12.030