A Hybrid Model Utilizing Principal Component Analysis and Artificial Neural Networks for Driving Drowsiness Detection
نویسندگان
چکیده
The detection of drowsiness while driving plays a vital role in ensuring road safety. Existing methods need to reduce external interference and sensor intrusiveness, their algorithms must be modified improve accuracy, stability, timeliness. In order realize fast accurate using physiological data that can collected non-intrusively, hybrid model with principal component analysis artificial neural networks was proposed this study. Principal used remove the noise redundant information from original data, were classify processed data. Three other models designed for comparison, including classic machine learning algorithms, single networks, algorithms. results indicated average accuracy exceeded 97%, training time lower than 0.3 s, standard deviation model’s 0.7%, indicating could detect more accurately quickly comparison stability. Thus, help detection. This method applied active warning systems (AWS) intelligent vehicles future.
منابع مشابه
Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملHybrid and parallel face classifier based on artificial neural networks and principal component analysis
We present a hybrid and parallel system based on artificial neural networks for a face invariant classifier and general pattern recognition problems. A set of face features is extracted by using the eigenpaxel method, which is based on principal component analysis (PCA) of a group of pixel, that is called a paxel. To classify subjects, multi-layer perceptron neural network (NN)s are trained for...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملNonlinear Principal Component Analysis by Neural Networks
Nonlinear principal component analysis (NLPCA) can be performed by a neural network model which nonlinearly generalizes the classical principal component analysis (PCA) method. The presence of local minima in the cost function renders the NLPCA somewhat unstable, as optimizations started from different initial parameters often converge to different minima. Regularization by adding weight penalt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12126007