A hybrid engineering algorithm of the seeker algorithm and particle swarm optimization

نویسندگان

چکیده

Abstract A newly hybrid algorithm is proposed based on the combination of seeker optimization and particle swarm optimization. The a double population evolution strategy, populations individuals are evolved from separately. employ an information sharing mechanism to implement coevolution. enhances individuals’ diversity averts fall into local optimum. compared with optimization, simulated annealing genetic algorithm, dragonfly brain storming gravitational search sine cosine salp multi-verse optimizer, then 15 benchmark functions, five proportional integral differential control parameters models, six constrained engineering problems selected for experiment. According experimental results, can be used in problems. ability robustness better.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem

Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

7 Hybrid Genetic : Particle Swarm Optimization Algorithm

This chapter proposes a hybrid approach by combining a Euclidian distance (EU) based genetic algorithm (GA) and particle swarm optimization (PSO) method. The performance of the hybrid algorithm is illustrated using four test functions. Proportional integral derivative (PID) controllers have been widely used in industrial systems such as chemical process, biomedical process, and in the main stea...

متن کامل

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

Hybrid Seeker Optimization Algorithm for Global Optimization

Swarm intelligence algorithms have been succesfully applied to hard optimization problems. Seeker optimization algorithm is one of the latest members of that class of metaheuristics and it has not yet been thorougly researched. Since the early versions of this algorithm were less succesful with multimodal functions, we propose in this paper hybridization of the seeker optimization algorithm wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MP MATERIALPRUEFUNG - MP MATERIALS TESTING

سال: 2022

ISSN: ['2195-8572', '0025-5300']

DOI: https://doi.org/10.1515/mt-2021-2138