A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training
نویسندگان
چکیده
منابع مشابه
A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training
In this study a hybrid differential evolution-back-propagation algorithm to optimize the weights of feedforward neural network is proposed.The hybrid algorithm can achieve faster convergence speed with higher accuracy. The proposed hybrid algorithm combining differential evolution (DE) and back-propagation (BP) algorithm is referred to as DE-BP algorithm to train the weights of the feed-forward...
متن کاملA hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
The particle swarm optimization algorithm was showed to converge rapidly during the initial stages of a global search, but around global optimum, the search process will become very slow. On the contrary, the gradient descending method can achieve faster convergent speed around global optimum, and at the same time, the convergent accuracy can be higher. So in this paper, a hybrid algorithm comb...
متن کاملA Modiied Back Propagation Algorithm for Neural Network Training
| A variation of the classical Back{Propagation algorithm for neural network training is proposed and convergence is established using the perturbation results of Mangasarian and Solodov 1]. The algorithm is similar to the Successive Overrelaxation (SOR) algorithm for systems of linear equations and linear complementary problems in using the most recently computed values of the weights to updat...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملFeature Selection and Optimization of Back Propagation Neural Network Parameters Using the Differential Evolution Algorithm
Back propagation neural network is successfully used in various fields, particularly in pattern recognition. Despite numerous applications, back propagation neural network`s design and optimization are developed by trial-and-error process, which is time-consuming. On the other hand, although a dataset may contain many features, these features may not be useful in a back propagation neural netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/14641-2943