A Hybrid Classification Method via Character Embedding in Chinese Short Text with Few Words
نویسندگان
چکیده
منابع مشابه
Charagram: Embedding Words and Sentences via Character n-grams
We present CHARAGRAM embeddings, a simple approach for learning character-based compositional models to embed textual sequences. A word or sentence is represented using a character n-gram count vector, followed by a single nonlinear transformation to yield a low-dimensional embedding. We use three tasks for evaluation: word similarity, sentence similarity, and part-of-speech tagging. We demonst...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملRadical-Enhanced Chinese Character Embedding
We present a method to leverage radical for learning Chinese character embedding. Radical is a semantic and phonetic component of Chinese character. It plays an important role as characters with the same radical usually have similar semantic meaning and grammatical usage. However, existing Chinese processing algorithms typically regard word or character as the basic unit but ignore the crucial ...
متن کاملA Character-Net Based Chinese Text Segmentation Method
The segmentation of Chinese texts is a key process in Chinese information processing. The difficulties in segmentation are the process of ambiguous character string and unknown Chinese words. In order to obtain the correct result, the first is identification of all possible candidates of Chinese words in a text. In this paper, a data structure Chinese-character-net is put forward, then, based o...
متن کاملMulti-prototype Chinese Character Embedding
Chinese sentences are written as sequences of characters, which are elementary units of syntax and semantics. Characters are highly polysemous in forming words. We present a position-sensitive skip-gram model to learn multi-prototype Chinese character embeddings, and explore the usefulness of such character embeddings to Chinese NLP tasks. Evaluation on character similarity shows that multi-pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2994450