A hybrid and effective learning approach for Click Fraud detection
نویسندگان
چکیده
منابع مشابه
Intrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملA Novel Ensemble Learning-Based Approach for Click Fraud Detection in Mobile Advertising
By diverting funds away from legitimate partners (a.k.a publishers), click fraud represents a serious drain on advertising budgets and can seriously harm the viability of the internet advertising market. As such, fraud detection algorithms which can identify fraudulent behavior based on user click patterns are extremely valuable. Based on the BuzzCity dataset, we propose a novel approach for cl...
متن کاملStock Market Fraud Detection, A Probabilistic Approach
In order to have a fair market condition, it is crucial that regulators continuously monitor the stock market for possible fraud and market manipulation. There are many types of fraudulent activities defined in this context. In our paper we will be focusing on "front running". According to Association of Certified Fraud Examiners, front running is a form of insider information and thus is very ...
متن کاملCombining Data Mining and Machine Learning for Effective Fraud Detection
This paper describes the automatic design of methods for detecting fraudulent behavior. Much of the design is accomplished using a series of machine learning methods. In particular, we combine data mining and constructive induction with more standard machine learning techniques to design methods for detecting fraudulent usage of cellular telephones based on profiling customer behavior. Specific...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning with Applications
سال: 2021
ISSN: 2666-8270
DOI: 10.1016/j.mlwa.2020.100016