A Hölder infinity Laplacian
نویسندگان
چکیده
منابع مشابه
A Hölder infinity Laplacian
In this paper we study the limit as p →∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this cons...
متن کاملOptimal Regularity for the Pseudo Infinity Laplacian
In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.
متن کاملOptimal Lipschitz Extensions and the Infinity Laplacian
We reconsider in this paper boundary value problems for the so-called “infinity Laplacian” PDE and the relationships with optimal Lipschitz extensions of the boundary data. We provide some fairly elegant new proofs, which clarify and simplify previous work, and in particular draw attention to the fact that solutions may be characterized by a comparison principle with appropriate cones. We in pa...
متن کاملTug-of-war and the infinity Laplacian
We prove that every bounded Lipschitz function F on a subset Y of a length space X admits a tautest extension to X, i.e., a unique Lipschitz extension u : X → R for which LipUu = Lip∂Uu for all open U ⊂ X r Y . This was previously known only for bounded domains in Rn, in which case u is infinity-harmonic, that is, a viscosity solution to ∆∞u = 0, where
متن کاملA PDE Perspective of The Normalized Infinity Laplacian
The inhomogeneous normalized infinity Laplace equation was derived from the tug-of-war game in [PSSW] with the positive right-hand-side as a running payoff. The existence, uniqueness and comparison with polar quadratic functions were proved in [PSSW] by the game theory. In this paper, the normalized infinity Laplacian, formally written as 4∞u = | 5 u|−2 ∑n i,j=1 ∂xiu∂xju∂ xixju, is defined in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2011
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv/2011182