A high‐order and fast scheme with variable time steps for the time‐fractional Black‐Scholes equation
نویسندگان
چکیده
In this paper, a high-order and fast numerical method is investigated for the time-fractional Black-Scholes equation. order to deal with typical weak initial singularity of solution, we construct finite difference scheme variable time steps, where fractional derivative approximated by nonuniform Alikhanov formula sum-of-exponentials (SOE) technique. spatial direction, an average approximation fourth-order accuracy employed. The stability convergence second in fourth space proposed are religiously derived energy method. Numerical examples given demonstrate theoretical statement.
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملa numerical scheme for space-time fractional advection-dispersion equation
in this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. we utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. by using bernstein polynomial basis, the problem is transformed in...
متن کاملA Spatial Sixth Order Finite Difference Scheme for Time Fractional Sub-diffusion Equation with Variable Coefficient
In this paper, we present a finite difference scheme for a class of time fractional diffusion equation with variable coefficient, where the fractional derivative is defined by the Caputo derivative. The present algorithm is unconditionally stable, and possess spatial sixth order and temporal 2 − α order accuracy, which is an improvement of the spatial fourth order accuracy in the existing resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in The Applied Sciences
سال: 2022
ISSN: ['1099-1476', '0170-4214']
DOI: https://doi.org/10.1002/mma.8623