A Higher-Order Hardy-Type Inequality in Anisotropic Sobolev Spaces
نویسندگان
چکیده
منابع مشابه
On a Higher-order Hardy Inequality
The Hardy inequality ∫ Ω |u(x)|pd(x)−p dx c ∫ Ω |∇u(x)|p dx with d(x) = dist(x, ∂Ω) holds for u ∈ C∞ 0 (Ω) if Ω ⊂ n is an open set with a sufficiently smooth boundary and if 1 < p < ∞. P.Haj lasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend...
متن کاملA fully anisotropic Sobolev inequality
Let n ≥ 2 and let A : Rn → [0,∞] be any convex function satisfying the following properties: A(0) = 0 and A(ξ) = A(−ξ) for ξ ∈ R; (1.1) for every t > 0, {ξ ∈ R : A(ξ) ≤ t} (1.2) is a compact set whose interior contains 0. Observe that A need not depend on the length |ξ| of ξ nor be the sum of functions of its components ξi, i = 1, . . . , n. The purpose of this note is to exhibit an inequality ...
متن کاملRemarks on a Sobolev–Hardy inequality
where x = (y, z) ∈ R × R was studied by Badiale and Tarantello in [1]. Our aim is to solve two open problems contained in [1]. First we compute the optimal value of the constant C in Equation (1) in the case of Hardy’s inequality, namely p = q = β. In fact we prove a more general inequality with optimal constant in Section 2. In Section 3, we consider the symmetry of the optimal functions. Usin...
متن کاملAbstract Hardy-Sobolev spaces and interpolation
Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...
متن کاملOn a decomposition of Hardy--Hilbert's type inequality
In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2012
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2012/129691