A High Order Accurate Finite Difference Method for the Drinfel’d–Sokolov–Wilson Equation
نویسندگان
چکیده
Abstract We analyse numerically the periodic problem and initial boundary value of Korteweg-de Vries equation Drindfeld–Sokolov–Wilson using summation-by-parts simultaneous-approximation-term method. Two sets conditions are derived for each which stability is shown energy Numerical analysis done when solution interacts with boundaries. Results show benefit higher order SBP operators.
منابع مشابه
A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation
A new 9-point sixth-order accurate compact finite-difference method for solving the Helmholtz equation in one and two dimensions, is developed and analyzed. This scheme is based on sixth-order approximation to the derivative calculated from the Helmholtz equation. A sixth-order accurate symmetrical representation for the Neumann boundary condition was also developed. The efficiency and accuracy...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملHigh Order Stable Finite Difference Methods for the Schrödinger Equation
In this paper we extend the Summation–by–parts–simultaneous approximation term (SBP–SAT) technique to the Schrödinger equation. Stability estimates are derived and the accuracy of numerical approximations of interior order 2m, m = 1, 2, 3, are analyzed in the case of Dirichlet boundary conditions. We show that a boundary closure of the numerical approximations of order m lead to global accuracy...
متن کاملFourth-order finite difference method for solving Burgers' equation
In this paper, we present fourth-order finite difference method for solving nonlinear one-dimensional Burgers equation. This method is unconditionally stable. The convergence analysis of the present method is studied and an upper bound for the error is derived. Numerical comparisons are made with most of the existing numerical methods for solving this equation. 2005 Elsevier Inc. All rights res...
متن کاملA high order finite difference method with Richardsonextrapolation for 3D convection diffusion equation
In this paper, we extend the Sun and Zhang’s [24] work on high order finite difference method, which is based on the Richardson extrapolation technique and an operator interpolation scheme for the one and two dimensional steady convection diffusion equations to the three dimensional case. Firstly, we employ a fourth order compact difference scheme to get the fourth order accurate solution on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2021
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-021-01481-4