A Hierarchical Neural-Network-Based Document Representation Approach for Text Classification
نویسندگان
چکیده
منابع مشابه
A Neural Network for Text Representation
Text categorization and retrieval tasks are often based on a good representation of textual data. Departing from the classical vector space model, several probabilistic models have been proposed recently, such as PLSA and LDA. In this paper, we propose the use of a neural network based, non-probabilistic, solution, which captures jointly a rich representation of words and documents. Experiments...
متن کاملHierarchical Recurrent Neural Network for Document Modeling
This paper proposes a novel hierarchical recurrent neural network language model (HRNNLM) for document modeling. After establishing a RNN to capture the coherence between sentences in a document, HRNNLM integrates it as the sentence history information into the word level RNN to predict the word sequence with cross-sentence contextual information. A two-step training approach is designed, in wh...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملDocument Vector Space Representation Model for Automatic Text Classification
Classification of text documents presents a unique challenge to conventional classification algorithms. Due to the existence of large number of features in the datasets, providing a desired representation for text documents can be seen as another problem. In this paper a simple but effective representation model for text documents to tackle the classification problem is discussed. Two different...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2018
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2018/7987691