A Ginzburg–Landau model with topologically induced free discontinuities

نویسندگان

چکیده

Nous étudions un modèle variationnel en deux dimensions qui combine les caractéristiques des fonctionnelles de Ginzburg–Landau et Mumford–Shah. Comme dans la théorie classique (et le régime faible énergie) nombre prescrit vortex apparaît ; autorise aussi formation lignes discontinuité dont l’énergie pénalise longueur. Le phénomène nouveau est que ont degé fractionnaire 1/m qu’ils doivent être connectés par pour former agrégats degré total entier. Vortex discontinuités sont donc couplés une contrainte topologique. Ginzburg–Landau, contient échelle longueur ?>0. faisons analyse complète ?-convergence ce lorsque ??0 énergie. ensuite structure minimiseurs du problème limite montrons particulier saut d’un tel minimiseur solutions d’une variante Steiner. Enfin, nous établissons ?>0 petit, initial possèdent même structure, moins loin vortex.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Gradient Discontinuities

Various problems in continuum mechanics or artificial intelligence can be modelled by integral functionals depending on second order derivatives of competing functions and on closed sets where discontinuities for either such functions or their first derivatives are allowed. The existence of minimizers for such functionals is shown together with some information about their regularity.

متن کامل

Thermal Buckling and Thermal Induced free Vibration Analysis of Perforated Composite Plates: a Mathematical Model

This artcile is concerned with thermal buckling and thermal induced free vibration analyses of PCPs (perforated composite plates) with simply supported edges applying a mathematical model. The stiffness and density of PCP are defined locally using Heaviside distribution functions. The governing equations are derived based on CLPT. The present solution gives reasonable results in comparison with...

متن کامل

Topologically Induced Instability in String Theory

Using Witten’s generalised AdS/CFT correspondence, we show that there are certain differentiable manifolds Z such that string theory is unstable [to the emission of “large branes”] on Z no matter what the metric may be. Therefore, the instability is due to the [differential] topology of the background, not to its geometry. We propose a precise formulation of this restriction on the topology of ...

متن کامل

Model for vortex turbulence with discontinuities in the solar wind

A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low β plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components t...

متن کامل

Spatially Varying Coefficient Model for Neuroimaging Data with Jump Discontinuities.

Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient model (SVCM) to capture the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) with a set of covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise smooth regions with unkno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2021

ISSN: ['0373-0956', '1777-5310']

DOI: https://doi.org/10.5802/aif.3388