A geometric convergence formula for the level-increment-truncation approximation of M/G/1-type Markov chains

نویسندگان

چکیده

This paper considers an approximation usually used when implementing Ramaswami's recursion for the stationary distribution of M/G/1-type Markov chain. The is called level-increment-truncation because it truncates level increment at a given threshold. main contribution this to present geometric convergence formula level-wise difference between respective distributions original chain and its LI truncation under assumption that level-increment light-tailed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Geometric Convergence Rates for Time-Sampled Markov Chains

We consider time-sampled Markov chain kernels, of the form P = ∑ n μ{n}P. We prove bounds on the total variation distance to stationarity of such chains. We are motivated by the analysis of nearperiodic MCMC algorithms.

متن کامل

Convergence Rates for Markov Chains

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Convergence for periodic Markov chains

Consider a discrete-time Markov chain (Xn : n > 0) ∼ Markov(λ, P ) with countable state space S. In the last lecture, we proved the following theorem for aperiodic Markov chains. Theorem (Aperiodic case). Assume P is irreducible and positive recurrent with unique invariant measure π. If, in addition, P is aperiodic, then P(Xn = j)→ πj as n→∞ for all j ∈ S. In particular, p (n) ij → πj as n→∞ fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research Letters

سال: 2023

ISSN: ['0167-6377', '1872-7468']

DOI: https://doi.org/10.1016/j.orl.2023.04.005