A generalized Riemann boundary value problem and integral

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann boundary value problem for hyperanalytic functions

The theory of Riemann boundary value problem for analytic functions of one complex variable and singular integral equations that are equivalent to it has been extensively studied in the literature. For classical books on this topic see [7, 12, 13] and for an actual overview of them the reader is directed to the monograph by Estrada and Kanwal [6], and the references therein. In the more recent ...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Riemann Boundary Value Problem for Triharmonic Equation in Higher Space

We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R (n)\∂Ω, u (+)(x) = u (-)(x)G(x) + g(x), x ∈ ∂Ω, (D (j) u)(+)(x) = (D (j) u)(-)(x)A j + f j (x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5)  ∂Ω is a Lyapunov surface in R (n) , D = ∑ k=1 (n) e k (∂/∂x k) is the Dirac operator, and u(x) = ∑ A e A u A (x) are unknown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sibirskie Elektronnye Matematicheskie Izvestiya

سال: 2018

ISSN: 1813-3304

DOI: 10.33048/semi.2018.15.136