A generalization of Kaehler geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Instantons and Kaehler Geometry of Nilpotent Orbits

The first obstacle in building a Geometric Quantization theory for nilpotent orbits of a real semisimple Lie group has been the lack of an invariant polarization. In order to generalize the Fock space construction of the quantum mechanical oscillator, a polarization of the symplectic orbit invariant under the maximal compact subgroup is required. In this paper, we explain how such a polarizatio...

متن کامل

Generalization of Laguerre Geometry

The article deals with the relationship between Laguerre geometry and Minkowski sum. This relationship is used to create new geometry based generally on fundamental objects different to closed balls that formed Laguerre geometry. In the end of the article, there is defined also generalization of medial axis transform to the newly defined spaces and proved its uniqueness. The article continues t...

متن کامل

A GENERALIZATION OF PRIME HYPERIDEALS

‎‎Let $R$ be a multiplicative hyperring‎. In this paper‎, ‎we introduce and study the concept of n-absorbing hyperideal which is a generalization‎ ‎of prime hyperideal‎. ‎A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of ‎$‎R‎$‎ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$‎, ‎then there are $n$ of the $alpha_i^,$s whose product ...

متن کامل

A GENERALIZATION OF CORETRACTABLE MODULES

Let $R$ be a ring and $M$ a right $R$-module. We call $M$, coretractable relative to $overline{Z}(M)$ (for short, $overline{Z}(M)$-coretractable) provided that, for every proper submodule $N$ of $M$ containing $overline{Z}(M)$, there is a nonzero homomorphism $f:dfrac{M}{N}rightarrow M$. We investigate some conditions under which the two concepts coretractable and $overline{Z}(M)$-coretractable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1972

ISSN: 0022-040X

DOI: 10.4310/jdg/1214430497