A general comparison theorem for nonlinear equations
نویسندگان
چکیده
منابع مشابه
A Quantitative Comparison Theorem for Nonlinear Equations
In the present paper we establish a quantitative comparison theorem for positive solutions of the following initial value problems 8 < : (p 1 (r)(u)ju 0 j m?2 u 0) 0 + q 1 (r)f(u) = 0 u(0) = u 0 ; u 0 (0) = 0 and 8 < : (p 2 (r)(v)jv 0 j m?2 v 0) 0 + q 2 (r)f(v) = 0 v(0) = v 0 ; v 0 (0) = 0 with r > 0 and m > 1, and also show some applications of the theorem to the non-existence problem of posit...
متن کاملDSM for general nonlinear equations
If F : H → H is a map in a Hilbert space H, F ∈ C2 loc, and there exists a solution y, possibly non-unique, such that F (y) = 0, F ′(y) 6= 0, then equation F (u) = 0 can be solved by a DSM (Dynamical Systems Method) and the rate of convergence of the DSM is given provided that a source-type assumption holds. A discrete version of the DSM yields also a convergent iterative method for finding y. ...
متن کاملExistence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem
In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A general Liouville type theorem for some conformally invariant fully nonlinear equations
Various Liouville type theorems for conformally invariant equations have been obtained by Obata ([9]), Gidas, Ni and Nirenberg ([4]), Caffarelli, Gidas and Spruck ([1]), Viaclovsky ([10] and [11]), Chang, Gursky and Yang ([2] and [3]), and Li and Li ([5], [6] and [7]). See e. g. theorem 1.3 and remark 1.6 in [6] where these results (except for the one in [7]) are stated more precisely. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2001
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(01)00208-5