A general bridge theorem for self-avoiding walks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Self - Avoiding Walks

We consider a model of self-avoiding walks on the lattice Zd with different weights for steps in each of the 2d lattice directions. We find that the directiondependent mass for the two-point function of this model has three phases: mass positive in all directions; mass identically −∞; and masses of different signs in different directions. The final possibility can only occur if the weights are ...

متن کامل

Prudent Self-Avoiding Walks

We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.

متن کامل

Extendable Self-avoiding Walks

The connective constant μ of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultan...

متن کامل

Counting Self-avoiding Walks

The connective constant μ(G) of a graph G is the asymptotic growth rate of the number of self-avoiding walks on G from a given starting vertex. We survey three aspects of the dependence of the connective constant on the underlying graph G. Firstly, when G is cubic, we study the effect on μ(G) of the Fisher transformation (that is, the replacement of vertices by triangles). Secondly, we discuss ...

متن کامل

Self-Avoiding chiral Walks

We describe a simple, discrete model of deterministic chiral motion on a square lattice. The model is based on rotating walkers with trailing tails spanning L lattice bonds. These tail segments cannot overlap and their leading A segments cannot be crossed. As prescribed by their chirality, walkers must turn if possible, or go straight, or else correct earlier steps recursively. The resulting mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2020

ISSN: 0012-365X

DOI: 10.1016/j.disc.2020.112092