A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries

نویسندگان

چکیده

Abstract Solid-state batteries (SSBs) are considered to be the next-generation lithium-ion battery technology due their enhanced energy density and safety. However, high electronic conductivity of solid-state electrolytes (SSEs) leads Li dendrite nucleation proliferation. Uneven electric-field distribution resulting from poor interfacial contact can further promote dendritic deposition lead rapid short circuiting SSBs. Herein, we propose a flexible electron-blocking shield (EBS) protect garnet degradation. The EBS formed by an in-situ substitution reaction not only increase lithiophilicity but also stabilize volume change, maintaining integrity interface during repeated cycling. Density functional theory calculations show electron-tunneling barrier metal EBS, indicating excellent capacity for electron-blocking. protected cells exhibit improved critical current 1.2 mA cm ?2 stable cycling over 400 h at 1 (1 mAh ) room temperature. These results demonstrate effective strategy suppression dendrites present fresh insight into rational design SSE interface.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries

Dendritic Li deposition has been "a Gordian knot" for almost half a century, which significantly hinders the practical use of high-energy lithium metal batteries (LMBs). The underlying mechanisms of this dendrite formation are related to the preferential lithium deposition on the tips of the protuberances of the anode surface and also associated with the concentration gradient or even depletion...

متن کامل

A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. ...

متن کامل

Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core-shell nanospheres as an in...

متن کامل

A reversible dendrite-free high-areal-capacity lithium metal electrode

Reversible dendrite-free low-areal-capacity lithium metal electrodes have recently been revived, because of their pivotal role in developing beyond lithium ion batteries. However, there have been no reports of reversible dendrite-free high-areal-capacity lithium metal electrodes. Here we report on a strategy to realize unprecedented stable cycling of lithium electrodeposition/stripping with a h...

متن کامل

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2021

ISSN: ['2041-1723']

DOI: https://doi.org/10.1038/s41467-020-20463-y