A finite volume scheme for a Keller-Segel model with additional cross-diffusion
نویسندگان
چکیده
منابع مشابه
A finite volume scheme for a Keller-Segel model with additional cross-diffusion
A finite volume scheme for the (Patlak-) Keller-Segel model in two space dimensions with an additional cross-diffusion term in the elliptic equation for the chemical signal is analyzed. The main feature of the model is that there exists a new entropy functional yielding gradient estimates for the cell density and chemical concentration. The main features of the numerical scheme are positivity p...
متن کاملA finite volume scheme for the Patlak-Keller-Segel chemotaxis model
A finite volume method is presented to discretize the Patlak-Keller-Segel (PKS) model for chemosensitive movements. On the one hand, we prove existence and uniqueness of a numerical solution to the proposed scheme. On the other hand, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation convergences to the solution to the PK...
متن کاملA stochastic Keller-Segel model of chemotaxis
We introduce stochastic models of chemotaxis generalizing the deterministic KellerSegel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean’s approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cell...
متن کاملInstability in a generalized Keller-Segel model.
We present a generalized Keller-Segel model where an arbitrary number of chemical compounds react, some of which are produced by a species, and one of which is a chemoattractant for the species. To investigate the stability of homogeneous stationary states of this generalized model, we consider the eigenvalues of a linearized system. We are able to reduce this infinite dimensional eigenproblem ...
متن کاملCritical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions
This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2013
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/drs061