A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization
نویسندگان
چکیده
Abstract Data-driven optimization has found many successful applications in the real world and received increased attention field of evolutionary optimization. Most existing algorithms assume that data used for are always available on a central server construction surrogates. This assumption, however, may fail to hold when must be collected distributed way subject privacy restrictions. paper aims propose federated data-driven multi-/many-objective algorithm. To this end, we leverage learning surrogate so multiple clients collaboratively train radial-basis-function-network as global surrogate. Then new acquisition function is proposed approximate objective values using estimate uncertainty level approximated based local models. The performance algorithm verified series benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective algorithms.
منابع مشابه
IGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems
Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiand manyobjective evolutionary algorithms. In this paper, an IGD indicatorbased evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each gen...
متن کاملEvolutionary Rough Parallel Multi-Objective Optimization Algorithm
A hybrid unsupervised learning algorithm, which is termed as Parallel Rough-based Archived Multi-Objective Simulated Annealing (PARAMOSA), is proposed in this article. It comprises a judicious integration of the principles of the rough sets theory and the scalable distributed paradigm with the archived multi-objective simulated annealing approach. While the concept of boundary approximations of...
متن کاملMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization
Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In...
متن کاملA Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point...
متن کاملA New Evolutionary Algorithm for Multi-objective Optimization Problems
Among the currently successful Evolutionary Multi-Objective Algorithms (MOEAs), elitism and no sharing factor are two common characteristics and have been demonstrated to improve performance significantly. Based on these two principles, two heuristics, with which impressive improvements were showed in single objective optimization, are introduced in a newly designed EMOA in this paper: multi-pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex & Intelligent Systems
سال: 2021
ISSN: ['2198-6053', '2199-4536']
DOI: https://doi.org/10.1007/s40747-021-00506-7