A Dixmier-Schaefer-Zhang theorem for operator algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morita Theorem for Dual Operator Algebras

We prove that two dual operator algebras are weak Morita equivalent in the sense of [4] if and only if they have equivalent categories of dual operator modules via completely contractive functors which are also weakcontinuous on appropriate morphism spaces. Moreover, in a fashion similar to the operator algebra case we can characterize such functors as the module normal Haagerup tensor product ...

متن کامل

A Dixmier-moeglin Equivalence for Poisson Algebras with Torus Actions

A Poisson analog of the Dixmier-Moeglin equivalence is established for any affine Poisson algebra R on which an algebraic torus H acts rationally, by Poisson automorphisms, such that R has only finitely many prime Poisson H-stable ideals. In this setting, an additional characterization of the Poisson primitive ideals of R is obtained – they are precisely the prime Poisson ideals maximal in thei...

متن کامل

A Dichotomy Theorem within Schaefer for the Boolean Connectivity Problem

Gopalan et al. studied in [14] connectivity properties of the solution-space of Boolean formulas, and investigated complexity issues on connectivity problems in Schaefer’s framework [26]. A set S of logical relations is Schaefer if all relations in S are either bijunctive, Horn, dual Horn, or affine. They conjectured that the connectivity problem for Schaefer is in P . We disprove their conject...

متن کامل

From Dixmier Algebras to Star Products

Let M be a Galois cover of a nilpotent coadjoint orbit of a complex semisimple Lie group. We define the notion of a perfect Dixmier algebra for M and show how this produces a graded (non-local) equivariant star product on M with several very nice properties. This is part of a larger program we have been developing for working out the orbit method for nilpotent orbits.

متن کامل

Dixmier Approximation and Symmetric Amenability for C ∗ - Algebras

We study some general properties of tracial C∗-algebras. In the first part, we consider Dixmier type approximation theorem and characterize symmetric amenability for C∗-algebras. In the second part, we consider continuous bundles of tracial von Neumann algebras and classify some of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04904-7