A Distributed Frequent Itemset Mining Algorithm for Uncertain Data
نویسندگان
چکیده
منابع مشابه
Frequent Itemset Mining of Distributed Uncertain Data under User-Defined Constraints
Many existing distributed data mining algorithms do not allow users to express the patterns to be mined according to their intention via the use of constraints. Consequently, these unconstrained mining algorithms can yield numerous patterns that are not interesting to users. Moreover, due to inherited measurement inaccuracies and/or network latencies, data are often riddled with uncertainty. Th...
متن کاملIntegrity Verification for Outsourcing Uncertain Frequent Itemset Mining
In recent years, due to the wide applications of uncertain data (e.g., noisy data), uncertain frequent itemsets (UFI) mining over uncertain databases has attracted much attention, which differs from the corresponding deterministic problem from the generalized definition and resolutions. As the most costly task in association rule mining process, it has been shown that outsourcing this task to a...
متن کاملProbabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases
Frequent itemset mining in uncertain transaction databases semantically and computationally di ers from traditional techniques applied on standard (certain) transaction databases. Uncertain transaction databases consist of sets of existentially uncertain items. The uncertainty of items in transactions makes traditional techniques inapplicable. In this paper, we tackle the problem of nding proba...
متن کاملYAFIMA: Yet Another Frequent Itemset Mining Algorithm
Efficient discovery of frequent patterns from large databases is an active research area in data mining with broad applications in industry and deep implications in many areas of data mining. Although many efficient frequent-pattern mining techniques have been developed in the last decade, most of them assume relatively small databases, leaving extremely large but realistic datasets out of reac...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Performability Engineering
سال: 2019
ISSN: 0973-1318
DOI: 10.23940/ijpe.19.10.p27.28052816