A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Neural Networks for High Dimension, Low Sample Size Data

Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP)...

متن کامل

Geometric representation of high dimension, low sample size data

High dimension, low sample size data are emerging in various areas of science. We find a common structure underlying many such data sets by using a non-standard type of asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all the randomness in the data appears o...

متن کامل

Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds

SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds. (Under the direction of Dr. J. S. Marron.) The dissertation consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are rela...

متن کامل

Pca Consistency in High Dimension , Low Sample Size Context

Principal Component Analysis (PCA) is an important tool of dimension reduction especially when the dimension (or the number of variables) is very high. Asymptotic studies where the sample size is fixed, and the dimension grows (i.e. High Dimension, Low Sample Size (HDLSS)) are becoming increasingly relevant. We investigate the asymptotic behavior of the Principal Component (PC) directions. HDLS...

متن کامل

Clustering High Dimension, Low Sample Size Data Using the Maximal Data Piling Distance

We propose a new hierarchical clustering method for high dimension, low sample size (HDLSS) data. The method utilizes the fact that each individual data vector accounts for exactly one dimension in the subspace generated by HDLSS data. The linkage that is used for measuring the distance between clusters is the orthogonal distance between affine subspaces generated by each cluster. The ideal imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Neuroscience

سال: 2021

ISSN: 1471-2202

DOI: 10.1186/s12868-020-00605-0