A Detailed Study on Skolem Mean Labeling for Disjoint Union of Six Star Graphs
نویسندگان
چکیده
منابع مشابه
Skolem difference mean labeling of disconnected graphs
Let G = (V,E) be a graph with p vertices and q edges. G is said to have skolem difference mean labeling if it is possible to label the vertices x ∈ V with distinct elements f(x) from 1, 2, 3, ..., p+ q in such a way that for each edge e = uv, let f∗(e) = l |f(u)−f(v)| 2 m and the resulting labels of the edges are distinct and are from 1, 2, 3, ..., q. A graph that admits a skolem difference mea...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملOn Odd-graceful Labeling of Disjoint Union of Graphs
Let G = (V, E) be a finite, simple and undirected graph having v = |V (G)| and e = |E(G)|. A graph G with q edges is said to be odd-graceful if there is an injection f : V (G) → {0, 1, 2, . . . , 2q−1} such that, when each edge xy is assigned the label |f(x)−f(y)|, the resulting edge labels are {1, 3, 5, . . . , 2q−1}. Motivated by the work of Z. Gao [6], we have defined odd graceful labeling f...
متن کاملFurther results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Shanlax International Journal of Arts, Science and Humanities
سال: 2022
ISSN: ['2321-788X']
DOI: https://doi.org/10.34293/sijash.v10is1.5264