A decomposition theorem for planar harmonic mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landau's theorem for planar harmonic mappings

Landau gave a lower estimate for the radius of a schlicht disk centered at the origin and contained in the image of the unit disk under a bounded holomorphic function f normalized by f(0) = f ′(0)− 1 = 1. Chen, Gauthier, and Hengartner established analogous versions for bounded harmonic functions. We improve upon their estimates.

متن کامل

Planar Harmonic Univalent and Related Mappings

The theory of harmonic univalent mappings has become a very popular research topic in recent years. The aim of this expository article is to present a guided tour of the planar harmonic univalent and related mappings with emphasis on recent results and open problems and, in particular, to look at the harmonic analogues of the theory of analytic univalent functions in the unit disc.

متن کامل

Convolutions of Planar Harmonic Convex Mappings

Ruscheweyh and Sheil-Small proved that convexity is preserved under the convolution of univalent analytic mappings in K. However, when we consider the convolution of univalent harmonic convex mappings in K H , this property does not hold. In fact, such convolutions may not be univalent. We establish some results concerning the convolution of univalent harmonic convex mappings provided that it i...

متن کامل

A Spectral Decomposition Theorem for Certain Harmonic Algebras

Introduction. Let K be a simple ring with identity and let A be a harmonic ^-algebra with identity, where neither K nor A is assumed to be commutative. If one denotes the set of maximal ideals in A by Max(^4), then A is strongly semisimple iff S(A) = C\MGMBX(A) M = (0). We assume that A is strongly semisimple and note that this implies that A is Jacobson semisimple. One may equip Max(.4) with t...

متن کامل

The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings

The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03319-9